NEED FOR CERTIFICATION OF HOUSEHOLD WATER TREATMENT PRODUCTS: EXAMPLES FROM HAITI

Anna Murray¹, Flaurine Joseph², Molly Patrick³, Genelove Sylvain², Jocelyne Pierre-Louis², Daniele Lantagne¹

¹: Department of Civil and Environmental Engineering, Tufts University, Medford, MA, USA
²: Ministère de la Santé Publique et de la Population, Port-au-Prince, Haiti
³: Centers for Disease Control and Prevention, Atlanta, GA, USA
Background: Global Drinking Water

- 780 million people drink from unimproved water sources (UNICEF/WHO, 2012)
- 1.2 billion more drink contaminated water from improved sources (Onda et al., 2012)
Background

Household Water Treatment (HWT) Products are promoted to:

- Improve microbiological water quality
- Reduce burden of diarrheal disease
Background

- Specific country regulations exist (e.g. US EPA)
- Voluntary Standards Organizations (NSF Int’l)
- WHO International Scheme to Evaluate Household Water Treatment Technologies
 - Launched in 2014
 - Laboratory efficacy targets: Bacteria, Viruses, Protozoan cyst removal
 - Categorizes products as:
 - Highly protective
 - Protective
 - Limited Protection
Haitian Ministry of Health and Population (MSPP), with Tufts University, established a process for certifying HWT products in Haiti.

Two-stage Certification Process:
- Validation stage
- Approval stage

Specific to chemical treatment products
Validation Stage

Is the product certified as efficacious for treating drinking water through a recognized international process? (NSF, EPA, other)

- **No**
 - Has the product been shown to reduce organisms of concern to the WHO standards in drinking water in laboratory settings?
 - **No**
 - REJECT
 - **Yes**
 - APPROVAL STAGE

Approval Stage

- **Yes**
 - Has a product sample’s composition been verified to be within 20% of stated composition?
 - **No**
 - REJECT
 - **Yes**
 - Would effluent water meet internat’l and local drinking water quality criteria?
 - **Yes**
 - APPROVE
 - **No**
 - REJECT

- **Yes**
 - Is the product packaged appropriately?
 - In Haitian Creole
 - Product contents
 - Directions for HWT use
 - Lot number
 - Manufacture date
 - Expiration date
 - Ability to measure dose

- **No**
 - REJECT
Products

- **SAFI**
 (Clean Water Environmental, LLC)

- **SCI-62®**
 (Chem-a-Co, Inc.)

- **SilverDYNE®**
 (World Health Alliance International, Inc.)

- **Antinfek™ 10H**
 (Dove Biotech Limited)
Methodology

- Reviewed documentation provided by companies
- Verified International Certifications / Registrations (online databases, web search)
 - NSF/ANSI Standard 60
 - EPA Registration under Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA)
- Evidence of Efficacy data
 - Reviewed test results provided by companies
 - Literature Review: Laboratory research that the product meets WHO limited protection target
Methodology

- **Tested Product Composition**
 - within 20% of stated

- **Calculated if drinking water standards for health effects would be met**
 - WHO Guidelines for Drinking Water Quality
 - US EPA and European Union Drinking Water Regulations

- **Reviewed Product Packaging**
 - Ability to measure dose
 - Language
 - Contents listed
 - Directions for HWT (with correct dose)
 - Lot number, mfr date, expiration date
Zinc Sulfate and/or Copper Sulfate solution

Approvals:

Efficacy:

Composition:

Health Effects:

Dosage:

Package:
SCI-62®

Copper Sulfate solution

Approvals:

- NSF / ANSI 60 approval: Yes

“for applications in waters destined for use as drinking water, those waters must receive additional and separate potable water treatment”

Efficacy:

- Copper sulfate: effective algicide & bactericide
- Cu efficacy for HWT in laboratory trials – in contact overnight to 24 hours
- Technical representative advised using chlorine instead of this product to treat drinking water for US hikers

Composition:

- Product had 21% more copper than label

Health Effects:

- Safe Cu levels

Dosage:

- None given for HWT

Package:

- No information
SilverDYNE®

Colloidal Silver solution

Approvals:

Efficacy:

Composition:

Health Effects:

Dosage:

Package:

http://www.ezylife.com/product/silver-dyne
Antinfek™ 10H

Poly(hexamethylene biguanide) Hydrochloride (PHMB)

Approvals:

Efficacy:

Composition:

Health Effects:

Dosage:

Package:
Results: Summary

<table>
<thead>
<tr>
<th></th>
<th>SAFI</th>
<th>SCI-62®</th>
<th>Silverdyne®</th>
<th>Antinfek™</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int'l Certifications for Drinking Water</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Efficacy: meets WHO target at recommended dose</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Composition Verification (within 20%)</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>-</td>
</tr>
<tr>
<td>Meets Guidelines: Health Effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Achievable Dosage</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Complete Labeling</td>
<td>No</td>
<td>No</td>
<td>Almost</td>
<td>No</td>
</tr>
</tbody>
</table>
Conclusions

- Difficult to sort out misleading information, even when it’s in your language
 - Certifications that may not mean anything (e.g. facility registration with FDA)
 - Certifications for a different product by the same company
 - Test results that are:
 - for a different product
 - for a different use
 - at a different dose or contact time
There is a need for:

- **Assessments** of whether commercial HWT options meet WHO performance targets

- **Capacity-building** with developing country regulatory agencies to assist in evaluating HWT products, Considering language, usability, cultural appropriateness
 - Web-searches for certifications/approvals
 - Laboratory procedures and product testing

- **Enforcement** of product regulations from authorities in countries of manufacture
Thank You

Anna Murray
Tufts University
Civil & Environmental Engineering
anna.murray@tufts.edu
WORLD HEALTH ORGANIZATION EARLY WARNING INDICATORS OF HIV DRUG RESISTANCE IN NAMIBIA

Steven Y. Hong, MD, MPH, MAR
Assistant Professor
Division of Geographic Medicine and Infectious Diseases
Department of Public Health and Community Medicine
Adults and children estimated to be living with HIV | 2012

- **Eastern Europe & Central Asia**: 1.3 million
 - [1.0 million – 1.7 million]
- **Western & Central Europe**: 860,000
 - [800,000 – 930,000]
- **North America**: 1.3 million
 - [980,000 – 1.9 million]
- **Caribbean**: 250,000
 - [220,000 – 280,000]
- **Latin America**: 1.5 million
 - [1.2 million – 1.9 million]
- **Middle East & North Africa**: 260,000
 - [200,000 – 380,000]
- **Sub-Saharan Africa**: 25.0 million
 - [23.5 million – 26.6 million]
- **East Asia**: 880,000
 - [650,000 – 1.2 million]
- **South & South-East Asia**: 3.9 million
 - [2.9 million – 5.2 million]
- **Middle East & North Africa**: 260,000
 - [200,000 – 380,000]
- **Sub-Saharan Africa**: 25.0 million
 - [23.5 million – 26.6 million]
- **East Asia**: 880,000
 - [650,000 – 1.2 million]
- **South & South-East Asia**: 3.9 million
 - [2.9 million – 5.2 million]
- **Caribbean**: 250,000
 - [220,000 – 280,000]
- **Latin America**: 1.5 million
 - [1.2 million – 1.9 million]

Total: 35.3 million [32.2 million – 38.8 million]
Global Scale-Up of ART

Number of people receiving antiretroviral therapy in low- and middle-income countries, by region, 2002–2011

Emergence of HIV Drug Resistance (HIVDR) is Inevitable

- High replication rates
- High mutation rates
- Necessity for lifelong treatment

Emergence of HIV drug resistance (HIVDR)
Public health approach to HIVDR surveillance

- Rapid or uncontrolled emergence and transmission of HIVDR is a widely feared consequence of ART scale-up, which could lead to failure of ART programs and strategies to prevent HIV transmission increasing morbidity, mortality and cost.

- Public Health Approach to scaling up ART works
 - Standardized, population based approaches
 - Inexpensive, generic, fixed dose combinations

- Population-based assessment of HIVDR is critical to:
 - Optimize population-level outcomes
 - Monitor program-wide functioning
 - Strengthen public-health approach to ART delivery
World Health Organization (WHO) HIVDR Strategy

- WHO recommends that countries develop a public health strategy to assess and minimize the emergence and transmission of HIVDR.

- WHO has developed global HIVDR strategy designed to be fully integrated into country’s routine HIV prevention and monitoring activities.

Goal of the WHO HIVDR Surveillance Strategy

- Promote the long-term effectiveness of available regimens, improve quality of care, and optimize program efficiency

- Using simple, low cost and standardized methods
 - Inform population-based selection of first- and second-line ART regimens
 - Support national programs in minimizing the emergence and transmission of HIVDR
WHO HIV Drug Resistance Surveillance and Monitoring Strategy

- Surveillance of Transmitted HIVDR in Recently Infected Populations
- Monitoring of HIVDR Early Warning Indicators
- Surveillance of pre-treatment HIVDR in Populations Initiating ART
- Surveillance of Acquired HIVDR in Populations Receiving First-Line ART
- Surveillance of HIVDR in Children <18 months of Age
HIVDR Surveillance Framework

Early Warning Indicators (EWI):
why and where is HIVDR likely to be emerging?
What happens if you stop this drug?
Stopping drugs with different half lives

- Drug concentration
- Zone of potential replication
- Last Dose
- Day 1
- Day 2
- MONOTHERAPY
- IC_{90}
- IC_{50}

S. Taylor et al. 11th CROI Abs 131
NNRTI Resistance and Treatment Discontinuation

- Virologic failure was associated with repeated drug holidays.
- Repeated drug holidays was the only risk factor for developing a major mutation

Parienti et al CID 2004:38:1311-6
Frequency and Duration of Treatment
Interruptions >48hrs over 24 weeks on Self-pay ART in Uganda

Oyugi AIDS 2007

<table>
<thead>
<tr>
<th>Interruptions ≥ 48 hours</th>
<th>199 interruptions</th>
<th>62 people (64%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean # interruptions/person</td>
<td>2.0 ±2.9 (S.D)</td>
<td></td>
</tr>
<tr>
<td>Mean duration (days) for those who have interruptions</td>
<td>11.5 ±9.2 (S.D)</td>
<td></td>
</tr>
</tbody>
</table>

90% of missed doses were during treatment interruptions. Financial difficulty securing ARVs and drug stock-outs largely accounted for interruptions!!
MEMS-Defined 48 Hour Treatment Interruptions Predict Resistance (Uganda)

<table>
<thead>
<tr>
<th>Interruption</th>
<th>Resistant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes >48 hours</td>
<td>8/62 (13%)</td>
</tr>
<tr>
<td>No</td>
<td>0/33 (0%)</td>
</tr>
</tbody>
</table>

P=0.04

• **Steady and reliable access to medications**, in order to avoid treatment interruptions, will be critical to limiting the development of drug resistance in resource-limited settings.
• Focus on supply and distribution

Oyugi. AIDS 2007
What do you see?
There is a lion, but it is good at hiding
Drug resistance can “hide”

Like the lion, you may only know it is there by other indicators
Early Warning Indicators (EWIs)

- EWIs assess factors at individual clinics which are known to create situations favourable to the emergence of HIVDR
- EWIs provide clinic specific information
- EWIs provide necessary program context for interpretation of surveys of HIVDR

Bennett DE et al., Antivir Ther 2008
How are ART clinics and the ART program as a whole performing in minimizing population-level HIVDR?

1. Drug stock out
2. Retention in care
3. VL suppression
4. Adherence
5. Dispensing of triple drug regimens
EWI Reporting: Scorecard

- **Red**: Poor performance, below desired level
- **Amber**: Fair performance, progressing toward desired level
- **Green**: Excellent performance, achieving desired level
- **Grey**: Data not available

A “white” score is assigned only for the retention indicator and only in non-UNGASS reporting years.
WHO HIVDR EWI Package

<table>
<thead>
<tr>
<th>Early Warning Indicator</th>
<th>Target</th>
</tr>
</thead>
</table>
| **1. On-time pill pick-up** | • Red: <80%
• Amber: 80–90%
• Green: >90% |
| **2. Retention in care * | • Red: <75% retained after 12 months of ART
• Amber: 75–85% retained after 12 months of ART
• Green: >85% retained after 12 months of ART |
| **3. Pharmacy stock-outs** | • Red: <100% of a 12-month period with no stock-outs
• Green: 100% of a 12-month period with no stock-outs |
| **4. Dispensing practices** | • Red: >0% dispensing of mono- or dual therapy
• Green: 0% dispensing of mono- or dual therapy |
| **5. Viral load suppression at 12 months #** | • Red: <70% viral load suppression after 12 months of ART
• Amber: 70–85% viral load suppression after 12 months of ART
• Green: >85% viral load suppression after 12 months of ART |

* Retention in care definition equal to UNGASS #24 and PEPFAR #T1.3.D; #Targets for virological suppression in children <2 years old; Red <60%; Amber 60–70%; Green >70%
EWI Site - Specific Results: 2014 Adults

<table>
<thead>
<tr>
<th>Region</th>
<th>Site: Main Sites Outreach Sites</th>
<th>EWI 1: On-Time Pill Pick-Up</th>
<th>EWI 2: Retention</th>
<th>EWI 3: Pharmacy Stock-outs</th>
<th>EWI 4: Dispensing Practices</th>
<th>EWI 5: Virological Suppression Viral Load Completion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>185/212 (87%)</td>
<td>41/61 (67%)</td>
<td>12/12 (100%)</td>
<td>0/212 (0%)</td>
<td>11/20 (55%)</td>
</tr>
<tr>
<td>Kunene</td>
<td>Khorixas Hospital</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anichab Clinic (5/7) (71%)</td>
<td>½ (50%)</td>
<td>12/12 (100%)</td>
<td>0/7 (0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anker Clinic (5/6) (83%)</td>
<td>1/1 (100%)</td>
<td>12/12 (100%)</td>
<td>0/6 (0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bersig Clinic (18/19) (85%)</td>
<td>1/1 (100%)</td>
<td>12/12 (100%)</td>
<td>0/19 (0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Erwee Clinic (3/3) (100%)</td>
<td>-</td>
<td>12/12 (100%)</td>
<td>0/3 (0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fransfontein Clinic (17/17) (100%)</td>
<td>-</td>
<td>12/12 (100%)</td>
<td>0/17 (0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Khorixas Hospital (137/160) (86%)</td>
<td>38/57 (67%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>341/432 (79%)</td>
<td>123/171 (72%)</td>
<td></td>
<td>0/434 (0%)</td>
<td>2/4 (50%)</td>
</tr>
<tr>
<td></td>
<td>Opuwo Hospital</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Epupa Clinic (12/13) (92%)</td>
<td>4/4 (100%)</td>
<td>12/12 (100%)</td>
<td>0/13 (0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Etoto Clinic (10/13) (77%)</td>
<td>2/2 (100%)</td>
<td>12/12 (100%)</td>
<td>0/13 (0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Okangwati Clinic (15/21) (71%)</td>
<td>1/1 (100%)</td>
<td>12/12 (100%)</td>
<td>0/21 (0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Opuwo Hospital (154/184) (84%)</td>
<td>86/120 (72%)</td>
<td>12/12 (100%)</td>
<td>0/185 (0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Orumana Clinic (14/28) (50%)</td>
<td>4/8 (50%)</td>
<td>12/12 (100%)</td>
<td>0/29 (0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oruvandjei Clinic (14/21) (67%)</td>
<td>3/5 (60%)</td>
<td>12/12 (100%)</td>
<td>0/21 (0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Otjimuhaka Clinic (37/41) (90%)</td>
<td>4/4 (100%)</td>
<td>12/12 (100%)</td>
<td>0/41 (0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Otjiu Clinic (5/7) (71%)</td>
<td>1/1 (100%)</td>
<td>12/12 (100%)</td>
<td>0/7 (0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Otjiokavare Clinic (11/11) (100%)</td>
<td>1/1 (100%)</td>
<td>12/12 (100%)</td>
<td>0/11 (0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Otjondeka Clinic (23/28) (82%)</td>
<td>¾ (75%)</td>
<td>12/12 (100%)</td>
<td>0/28 (0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Otuani Clinic (15/18) (83%)</td>
<td>6/7 (86%)</td>
<td>12/12 (100%)</td>
<td>0/18 (0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sesfontein Clinic (31/47) (66%)</td>
<td>8/14 (57%)</td>
<td>12/12 (100%)</td>
<td>0/47 (0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>256/324 (79%)</td>
<td>120/160 (75%)</td>
<td></td>
<td>0/326 (0%)</td>
<td>9/11 (82%)</td>
</tr>
<tr>
<td></td>
<td>Outjo Hospital</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kamanjab Clinic (82/118) (69%)</td>
<td>34/43 (79%)</td>
<td>12/12 (100%)</td>
<td>0/119 (0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Okaukuejo Clinic (17/20) (85%)</td>
<td>-</td>
<td>12/12 (100%)</td>
<td>0/20 (0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Outjo Hospital (157/186) (84%)</td>
<td>86/117 (74%)</td>
<td>12/12 (100%)</td>
<td>0/187 (0%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
National EWI Summary 2014 (Adults)

<table>
<thead>
<tr>
<th>EWI</th>
<th>EWI Target for all sites (time period)</th>
<th>Number of sites meeting EWI target (% of sites meeting target) N=X ART sites</th>
</tr>
</thead>
</table>
| EWI 1: On-time ARV Drug Pick–up | Green: >90%
Amber: 80–90%
Red: <80%
(1 Jan 2013 -) | Green 40/194 (21%)
Amber 58/194 (30%)
Red 94/194 (48%)
Grey 2/194 (1%) |
| EWI 2: Retention in care | Green: >85%
Amber: 75–85%
Red: <75%
(1 Jan 2012 – 31 Dec 2012) | Green 66/194 (34%)
Amber 47/194 (24%)
Red 58/194 (30%)
Grey 23/194 (12%) |
| EWI 3: Pharmacy stock-outs | Green: 100%
Red: <100%
(1 April 2013 - 31 Mar 2014) | Green 179/194 (92%)
Red 15/194 (8%)
Grey 0/194 (0%) |
| EWI 4: ARV dispensing practices | Green: 0%
Red: >0%
(1 Jan 2013 -) | Green 191/194 (98%)
Red 1/194 (<1%)
Grey 2/194 (1%) |
| EWI 5: Virological Suppression | Green >85%
Amber 70-85%
Red <70%
(1 Oct 2013-31 March, 2014) | Green 0/47 (0%)
Amber 3/47 (6%)
Red 5/47 (11%)
Grey 39/47 (83%) |
National EWI Summary 2014 (Paediatrics)

<table>
<thead>
<tr>
<th>EWI</th>
<th>EWI Target for all sites (time period)</th>
<th>Number of sites meeting EWI target (% of sites meeting target) N=X ART sites</th>
</tr>
</thead>
</table>
| EWI 1: On-time ARV Drug Pick-up | Green: >90%
Amber: 80–90%
Red: <80%
(1 Jan 2013 -) | Green 54/162 (33%)
Amber 30/162 (18%)
Red 77/162 (48%)
Grey 1/162 (<1%) |
| EWI 2: Retention in care | Green: >85%
Amber: 75–85%
Red: <75%
(1 Jan 2012 – 31 Dec 2012) | Green 60/162 (37%)
Amber 9/162 (6%)
Red 24/162 (15%)
Grey 69/162 (42%) |
| EWI 3: Pharmacy stock-outs | Green: 100%
Red: <100%
(1 April 2013 - 31 Mar 2014) | Green 142/162 (88%)
Red 20/162 (12%)
Grey 0/162 (0%) |
| EWI 4: ARV dispensing practices | Green: 0%
Red: >0%
(1 Jan 2013 -) | Green 160/162 (99%)
Red 1/162 (<1%)
Grey 1/162 (<1%) |
| EWI 5: Virological Suppression | Green >85%
Amber 70-85%
Red <70%
(1 Oct 2013-31 March, 2014) | Green 1/47 (2%)
Amber 3/47 (6%)
Red 11/47 (23%)
Grey 32/47 (68%) |
Summary of EWI Results - Namibia (1)

EWI 1: On-time ARV Pick-up & EWI 2: Retention in care

- There may be data capture issues at certain sites and in certain regions affecting adherence/retention data

- Broad range of adherence and retention rates between sites suggest there may be factors at site-level that are influencing population adherence and retention

- Data suggest many patients may not be picking up pills on time and/or disengaging from care within first 12 months of ART and/or many transferring out without informing site
Summary of EWI Results - Namibia (2)

EWI 3: Pharmacy stock-outs
- Few stock-outs reported

EWI 4: ARV dispensing practices
- Few inappropriate regimens dispensed
EWI 5: Virological Suppression

- Low VL completion rates at many sites
 - Due to data capture?
 - Actual problem with conducting of VL?

- Low VL suppression rates at many sites
 - Due to biased sample?
 - Data capture problem?
 - Actual problem with VL suppression?
Recommended action plan (1)

EWI 1: On-time ARV pick-up & EWI 2: Retention in care

- Investigate data capture at poorly performing sites
- Investigate sites with poor performance to look for site-level factors contributing to poor population-level adherence and retention

- Ongoing operational research:
 - Defaulter Tracing Study
 - Namibia Adherence Retention Project (NARP)
 - Development AID from People to People (DAPP) tracing
 - Management Science for Health (MSH) Mhealth study
Recommended action plan (2)

EWI 5: Virological Suppression/Completion

- Investigate why VL completion rate is so low at many sites
 - Are clinicians not doing VL on all eligible patients?
 - Are clinicians selectively doing VL on sickest patients?
 - Are VL results not being returned to the medical record? Entered into electronic medical records?
 - Other reasons?
EWI monitoring Process

Abstract
- data on EWIs

Analyze data
- Site specific
- National

Pinpoint actions
- Site specific
- National

Reduce HIVDR, optimize care

Genotyping surveys are of limited use without ART programme information on which to base public health action.
Acknowledgements

Namibia Collaborators:
- **MoHSS Namibia:** Andrew Ndishishi, Norbert P. Forster, Anna-Maria Nitschke, Francina Tjituka, Nicholas Mutenda, Michael DeKlerk, Milner Siboleka, Salomo Natanael
- **WHO Namibia:** Tiruneh Desta
- **UNAM:** Lazarus Hangula, Philip Odonkor, Peter Nyarango
- **MSH Namibia:** Evans Sagwa, Samson Mwinga, Greatjoy Mazibuko
- **NIP:** Andreas Shiningavamwe

Tufts Collaborators: Christine Wanke, Michael Jordan, Alice Tang

Tufts Students: Alexandra Bukowski, Laura Sloan, Tuhin Roy